关于寻找毕业论文提纲范文 和在球状星团寻找智能文明相关毕业论文的格式范文

关于免费寻找论文范文在这里免费下载与阅读,为您的寻找相关论文写作提供资料。

在球状星团寻找智能文明

科学家精确测量太阳系外星际磁场的强度与方向

2008年发射升空的美国宇航局“星际边界探测器”,是专门用于探测太阳系与星际空间交界地带的探测器.数年来,“星际边界探测器”帮助科学家不断取得惊人发现,从而让人类更清楚地认识太阳系外的宇宙空间.近日,美国西南研究院科学家就是根据“星际边界探测器”的探测数据,精确地测量了日光层外的磁场强度和磁场方向,从而发现了一种支配太阳系之外星系的力.其实在“星际边界探测器”刚刚发射不久,就发现在一小片狭长的宇宙空间中存在着神奇之处,那里比其他区域有更多的粒子在流动.这片狭长的宇宙空间也被称为“星际边界探测器带”.这个神秘的带状结构帮助科学家打开了窥探太阳系外宇宙空间的大门.美国宇航局认为,“这就好比根据窗外的雨滴来判断室外的天气情况.”

为了更好地描述太阳系邻近的宇宙空间,美国西南研究院科学家根据“星际边界探测器”的探测数据对星际边界进行模拟分析与研究.星际边界位于我们太阳系周围的巨型磁场泡的最边缘,也被称为日光层.通过最新的分析结果,科学家精确测量了日光层外的磁场强度和磁场方向.而科学家的最新研究成果让我们认识了支配太阳系之外星系的磁场力,从而对我们太阳系周围的宇宙空间有了更清楚的认识.这一研究成果是基于“星际边界探测器带”的起源理论而形成的.在“星际边界探测器带”中,流动的粒子其实是太阳粒子经过长途飞行到太阳磁场边界后被反射回来的.在太阳系的周围有个巨型的泡泡,即日光层.泡泡中充满了所谓的太阳风,即太阳不断喷射出来的电离态气体.当这些粒子抵达日光层边界时,它们的运动就会变得更为复杂.此项研究主要负责人、美国西南研究院科学家埃里克?泽因斯坦介绍说,“一些太阳风质子经过一系列复杂的电离变换又被反射飞向太阳,形成了所谓的‘星际边界探测器带’.模拟实验和‘星际边界探测器’观测数据表明这一过程最有可能就是‘星际边界探测器带’的起源,该过程平均需要三到六年时间.”在日光层外的星际空间,离子体的速度、密度和温度与太阳风离子体和中性气体完全不同.这些物质与日光层边界相互作用形成了一个被称为“日鞘内层”的区域,这一区域内侧与终端激波区相邻,外侧与太阳风层顶搭界.一些来自太阳的太阳风质子到达这一边界区域后会获得一个电子,从而变成中性不带电,并越过太阳风层顶,不过当它们进入星际空间后又会再次失去电子,并沿着星际磁场周围旋转.

如果这些粒子在恰当的地点和恰当的时间获得了另一个电子,它们又会回到日光层中,并沿着来时的路径向地球飞来,并与“星际边界探测器”碰撞.这些携带了关于星际磁场信息的粒子在撞上探测器时,就相当于告诉了我们太阳系外星际空间的特点.泽因斯坦表示,“只有‘旅行者1号’探测器曾经直接观测过星际磁场,而且那些区域都接近于太阳风层顶都被扭曲了.但是,这一次我们的分析更进一步地精确测量了它的强度和方向.” “星际边界探测器带”反射回地球的粒子的不同方向由星际空间的性质来决定.模拟显示来自太空不同区域的粒子大多数是高能粒子,而不是能量较低的粒子,这也提示了星际磁场与日光层是如何相互作用的.在研究中,科学家一般利用这样的观测数据来模拟“星际边界探测器带”的起源.其实,这些模拟不仅仅可以精确地预测不同能量的中性粒子的位置,而且还可以根据“旅行者1号”探测器的数据、星际中性气体的偏移值和极地星光的观测数据来推断星际磁场的特点.

不过,早期一些星际磁场的模拟实验并没有得出较好的结论.“星际边界探测器”之前的那些估测主要都是基于两种数据点,即“旅行者1号”和“旅行者2号”环绕终端激波区的距离.泽因斯坦解释说,“‘旅行者1号’环绕终端激波区的距离是94个天文单位,而‘旅行者2号’的距离则是84个天文单位.”1个天文单位等于1.5亿千米.美国宇航局戈达德航天飞行中心科学家埃里克?克里斯坦表示,“这些新的发现可以用来更好地理解我们的空间环境是如何与太阳风层顶外的星际环境相互作用的.反过来,理解了这些相互作用也可以帮助我们解释‘星际边界探测器带’的形成秘密.”

“星际边界探测器”的科学任务是研究太阳系边界处太阳风与星际介质相互作用的特点.为了防止避免被地球磁圈产生的高能中性粒子的影响,“星际边界探测器”的轨道位于地球上空32万千米处.直接从复杂的星际边界区域获取探测数据的是美国宇航局的“旅行者”系统任务,其中“旅行者1号”于2004年进入这一边界区域,并穿过终端激波区.2012年,“旅行者1号”进入星际空间.

科学家精确测量太阳系外星际磁场的强度与方向

2008年发射升空的美国宇航局“星际边界探测器”,是专门用于探测太阳系与星际空间交界地带的探测器.数年来,“星际边界探测器”帮助科学家不断取得惊人发现,从而让人类更清楚地认识太阳系外的宇宙空间.近日,美国西南研究院科学家就是根据“星际边界探测器”的探测数据,精确地测量了日光层外的磁场强度和磁场方向,从而发现了一种支配太阳系之外星系的力.其实在“星际边界探测器”刚刚发射不久,就发现在一小片狭长的宇宙空间中存在着神奇之处,那里比其他区域有更多的粒子在流动.这片狭长的宇宙空间也被称为“星际边界探测器带”.这个神秘的带状结构帮助科学家打开了窥探太阳系外宇宙空间的大门.美国宇航局认为,“这就好比根据窗外的雨滴来判断室外的天气情况.”

为了更好地描述太阳系邻近的宇宙空间,美国西南研究院科学家根据“星际边界探测器”的探测数据对星际边界进行模拟分析与研究.星际边界位于我们太阳系周围的巨型磁场泡的最边缘,也被称为日光层.通过最新的分析结果,科学家精确测量了日光层外的磁场强度和磁场方向.而科学家的最新研究成果让我们认识了支配太阳系之外星系的磁场力,从而对我们太阳系周围的宇宙空间有了更清楚的认识.这一研究成果是基于“星际边界探测器带”的起源理论而形成的.在“星际边界探测器带”中,流动的粒子其实是太阳粒子经过长途飞行到太阳磁场边界后被反射回来的.在太阳系的周围有个巨型的泡泡,即日光层.泡泡中充满了所谓的太阳风,即太阳不断喷射出来的电离态气体.当这些粒子抵达日光层边界时,它们的运动就会变得更为复杂.此项研究主要负责人、美国西南研究院科学家埃里克?泽因斯坦介绍说,“一些太阳风质子经过一系列复杂的电离变换又被反射飞向太阳,形成了所谓的‘星际边界探测器带’.模拟实验和‘星际边界探测器’观测数据表明这一过程最有可能就是‘星际边界探测器带’的起源,该过程平均需要三到六年时间.”在日光层外的星际空间,离子体的速度、密度和温度与太阳风离子体和中性气体完全不同.这些物质与日光层边界相互作用形成了一个被称为“日鞘内层”的区域,这一区域内侧与终端激波区相邻,外侧与太阳风层顶搭界.一些来自太阳的太阳风质子到达这一边界区域后会获得一个电子,从而变成中性不带电,并越过太阳风层顶,不过当它们进入星际空间后又会再次失去电子,并沿着星际磁场周围旋转.

如果这些粒子在恰当的地点和恰当的时间获得了另一个电子,它们又会回到日光层中,并沿着来时的路径向地球飞来,并与“星际边界探测器”碰撞.这些携带了关于星际磁场信息的粒子在撞上探测器时,就相当于告诉了我们太阳系外星际空间的特点.泽因斯坦表示,“只有‘旅行者1号’探测器曾经直接观测过星际磁场,而且那些区域都接近于太阳风层顶都被扭曲了.但是,这一次我们的分析更进一步地精确测量了它的强度和方向.” “星际边界探测器带”反射回地球的粒子的不同方向由星际空间的性质来决定.模拟显示来自太空不同区域的粒子大多数是高能粒子,而不是能量较低的粒子,这也提示了星际磁场与日光层是如何相互作用的.在研究中,科学家一般利用这样的观测数据来模拟“星际边界探测器带”的起源.其实,这些模拟不仅仅可以精确地预测不同能量的中性粒子的位置,而且还可以根据“旅行者1号”探测器的数据、星际中性气体的偏移值和极地星光的观测数据来推断星际磁场的特点.

不过,早期一些星际磁场的模拟实验并没有得出较好的结论.“星际边界探测器”之前的那些估测主要都是基于两种数据点,即“旅行者1号”和“旅行者2号”环绕终端激波区的距离.泽因斯坦解释说,“‘旅行者1号’环绕终端激波区的距离是94个天文单位,而‘旅行者2号’的距离则是84个天文单位.”1个天文单位等于1.5亿千米.美国宇航局戈达德航天飞行中心科学家埃里克?克里斯坦表示,“这些新的发现可以用来更好地理解我们的空间环境是如何与太阳风层顶外的星际环境相互作用的.反过来,理解了这些相互作用也可以帮助我们解释‘星际边界探测器带’的形成秘密.”

“星际边界探测器”的科学任务是研究太阳系边界处太阳风与星际介质相互作用的特点.为了防止避免被地球磁圈产生的高能中性粒子的影响,“星际边界探测器”的轨道位于地球上空32万千米处.直接从复杂的星际边界区域获取探测数据的是美国宇航局的“旅行者”系统任务,其中“旅行者1号”于2004年进入这一边界区域,并穿过终端激波区.2012年,“旅行者1号”进入星际空间.

寻找论文范文结:

关于寻找方面的论文题目、论文提纲、寻找论文开题报告、文献综述、参考文献的相关大学硕士和本科毕业论文。